
1 Bayes’ theorem

Bayes’ theorem (also known as Bayes’ rule or Bayes’ law) is a result in probabil-
ity theory that relates conditional probabilities. If A and B denote two events,
P (A|B) denotes the conditional probability of A occurring, given that B occurs.
The two conditional probabilities P (A|B) and P (B|A) are in general different.
Bayes theorem gives a relation between P (A|B) and P (B|A).

An important application of Bayes’ theorem is that it gives a rule how to
update or revise the strengths of evidence-based beliefs in light of new evidence
a posteriori.

As a formal theorem, Bayes’ theorem is valid in all interpretations of prob-
ability. However, it plays a central role in the debate around the foundations of
statistics: frequentist and Bayesian interpretations disagree about the kinds of
things to which probabilities should be assigned in applications. Whereas fre-
quentists assign probabilities to random events according to their frequencies of
occurrence or to subsets of populations as proportions of the whole, Bayesians
assign probabilities to propositions that are uncertain. A consequence is that
Bayesians have more frequent occasion to use Bayes’ theorem. The articles on
Bayesian probability and frequentist probability discuss these debates at greater
length.

2 Statement of Bayes’ theorem

Bayes’ theorem relates the conditional and marginal probabilities of stochastic
events A and B:

P (A|B) = P (B|A) P (A)
P (B) .

Each term in Bayes’ theorem has a conventional name:

• P(A) is the prior probability or marginal probability of A. It is ”prior” in
the sense that it does not take into account any information about B.

• P (A|B) is the conditional probability of A, given B. It is also called the
posterior probability because it is derived from or depends upon the spec-
ified value of B.

• P (B|A) is the conditional probability of B given A.

• P(B) is the prior or marginal probability of B, and acts as a normalizing
constant.

3 Bayes’ theorem in terms of likelihood

Bayes’ theorem can also be interpreted in terms of likelihood:
P (A|B) ∝ L(A|B)P (A).
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Here L(A|B) is the likelihood of A given fixed B. The rule is then an im-
mediate consequence of the relationship P (B|A) = L(A|B). In many contexts
the likelihood function L can be multiplied by a constant factor, so that it is
proportional to, but does not equal the conditional probability P.

With this terminology, the theorem may be paraphrased as

posterior =
likelihood×prior

normalizing constant
In words: the posterior probability is proportional to the product of the

prior probability and the likelihood.
In addition, the ratio L(A|B)/P (B) is sometimes called the standardized

likelihood or normalized likelihood, so the theorem may also be paraphrased as
posterior = normalized likelihood × prior.

4 Derivation from conditional probabilities

To derive the theorem, we start from the definition of conditional probability.
The probability of event A given event B is

P (A|B) = P (A∩B)
P (B) .

Likewise, the probability of event B given event A is

P (B|A) = P (A∩B)
P (A) .

Rearranging and combining these two equations, we find
P (A|B)P (B) = P (A ∩ B) = P (B|A)P (A).
This lemma is sometimes called the product rule for probabilities. Dividing

both sides by P(B), providing that it is non-zero, we obtain Bayes’ theorem:

P (A|B) = P (B|A) P (A)
P (B) .

5 Alternative forms of Bayes’ theorem

Bayes’ theorem is often embellished by noting that
P (B) = P (A ∩ B) + P (AC ∩ B) = P (B|A)P (A) + P (B|AC)P (AC)
where AC is the complementary event of A (often called ”not A”). So the

theorem can be restated as
P (A|B) = P (B|A) P (A)

P (B|A)P (A)+P (B|AC)P (AC)
.

More generally, where Ai forms a partition of the event space,

P (Ai|B) = P (B|Ai) P (Ai)∑
j

P (B|Aj) P (Aj)
,

for any Ai in the partition.
See also the law of total probability.
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6 Bayes’ theorem in terms of odds and likeli-

hood ratio

Bayes’ theorem can also be written neatly in terms of a likelihood ratio and
odds O as

O(A|B) = O(A) · Λ(A|B)

where O(A|B) = P (A|B)
P (AC |B)

are the odds of A given B,

and O(A) = P (A)
P (AC)

are the odds of A by itself,

while Λ(A|B) = L(A|B)
L(AC |B)

= P (B|A)
P (B|AC)

is the likelihood ratio.

7 Bayes’ theorem for probability densities

There is also a version of Bayes’ theorem for continuous distributions. It is
somewhat harder to derive, since probability densities, strictly speaking, are
not probabilities, so Bayes’ theorem has to be established by a limit process;
see Papoulis (citation below), Section 7.3 for an elementary derivation. Bayes’s
theorem for probability densities is formally similar to the theorem for proba-
bilities:

f(x|y) = f(x,y)
f(y) = f(y|x) f(x)

f(y)

and there is an analogous statement of the law of total probability:

f(x|y) = f(y|x) f(x)∫
∞

−∞

f(y|x) f(x) dx
.

As in the discrete case, the terms have standard names. f(x, y) is the joint
distribution of X and Y, f(x—y) is the posterior distribution of X given Y=y,
f(y—x) = L(x—y) is (as a function of x) the likelihood function of X given Y=y,
and f(x) and f(y) are the marginal distributions of X and Y respectively, with
f(x) being the prior distribution of X.

Here we have indulged in a conventional abuse of notation, using f for each
one of these terms, although each one is really a different function; the functions
are distinguished by the names of their arguments.
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